Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ultrafast laser pulse beams are four-dimensional, space–time phenomena that can exhibit complicated, coupled spatial and temporal profiles. Tailoring the spatiotemporal profile of an ultrafast pulse beam is necessary to optimize the focused intensity and to engineer exotic spatiotemporally shaped pulse beams. Here we demonstrate a single-pulse, reference-free spatiotemporal characterization technique based on two colocated synchronized measurements: (1) broadband single-shot ptychography and (2) single-shot frequency resolved optical gating. We apply the technique to measure the nonlinear propagation of an ultrafast pulse beam through a fused silica window. Our spatiotemporal characterization method represents a major contribution to the growing field of spatiotemporally engineered ultrafast laser pulse beams.more » « less
-
We introduce a self-referenced system that retrieves the full spatio-temporal profile of an ultrashort pulse using a Shack-Hartmann and second harmonic generation FROG. The key feature is the precise co-location of a spectral phase measurement at one spatial position with the spectrally resolved spatial measurements.more » « less
-
High-intensity pulse-beams are ubiquitous in scientific investigations and industrial applications ranging from the generation of secondary radiation sources (e.g., high harmonic generation, electrons) to material processing (e.g., micromachining, laser-eye surgery). Crucially, pulse-beams can only be controlled to the degree to which they are characterized, necessitating sophisticated measurement techniques. We present a reference-free, full-field, single-shot spatiospectral measurement technique called broadband single-shot ptychography (BBSSP). BBSSP provides the complex wavefront for each spectral and polarization component in an ultrafast pulse-beam and should be applicable across the electromagnetic spectrum. BBSSP will dramatically improve the application and mitigation of spatiospectral pulse-beam structure.more » « less
-
Ultrafast pulse-beam characterization is critical for diverse scientific and industrial applications from micromachining to generating the highest intensity laser pulses. The four-dimensional structure of a pulse-beam, , can be fully characterized by coupling spatiospectral metrology with spectral phase measurement. When temporal pulse dynamics are not of primary interest, spatiospectral characterization of a pulse-beam provides crucial information even without spectral phase. Here we demonstrate spatiospectral characterization of pulse-beams via multiplexed broadband ptychography. The complex spatial profiles of multiple spectral components, , from modelocked Ti:sapphire and from extreme ultra-violet pulse-beams are reconstructed with minimum intervening optics and no refocusing. Critically, our technique does not require spectral filters, interferometers, or reference pulses.more » « less
An official website of the United States government

Full Text Available